Machine Learning and Computer Vision System for Phenotype Data Acquisition and Analysis in Plants
نویسندگان
چکیده
Phenomics is a technology-driven approach with promising future to obtain unbiased data of biological systems. Image acquisition is relatively simple. However data handling and analysis are not as developed compared to the sampling capacities. We present a system based on machine learning (ML) algorithms and computer vision intended to solve the automatic phenotype data analysis in plant material. We developed a growth-chamber able to accommodate species of various sizes. Night image acquisition requires near infrared lightning. For the ML process, we tested three different algorithms: k-nearest neighbour (kNN), Naive Bayes Classifier (NBC), and Support Vector Machine. Each ML algorithm was executed with different kernel functions and they were trained with raw data and two types of data normalisation. Different metrics were computed to determine the optimal configuration of the machine learning algorithms. We obtained a performance of 99.31% in kNN for RGB images and a 99.34% in SVM for NIR. Our results show that ML techniques can speed up phenomic data analysis. Furthermore, both RGB and NIR images can be segmented successfully but may require different ML algorithms for segmentation.
منابع مشابه
ارزیابی یک سیستم بینایی ماشین از راه اندازهگیری و تخمین شماری از ویژگیهای فیزیکی پسته
In order to increase the role of machine vision in agricultural research in Iran, especially for measuring physical attributes of seeds, a machine vision system was developed using a computer, a capture card, a video camera and a light box. All equipment was purchased from domestic markets. Computer programs were developed for hardware setup and for image processing applications. The programs p...
متن کاملارزیابی یک سیستم بینایی ماشین از راه اندازهگیری و تخمین شماری از ویژگیهای فیزیکی پسته
In order to increase the role of machine vision in agricultural research in Iran, especially for measuring physical attributes of seeds, a machine vision system was developed using a computer, a capture card, a video camera and a light box. All equipment was purchased from domestic markets. Computer programs were developed for hardware setup and for image processing applications. The programs p...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملSome Results about the Contractions and the Pendant Pairs of a Submodular System
Submodularity is an important property of set functions with deep theoretical results and various applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization. Nowadays submodular functions optimization has been attracted by many researchers. Pendant pairs of a symmetric...
متن کامل